IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

PRIMARY DECOMPOSITIONS IN NOETHERIAN RINGS

The intersection of primary ideals in not necessarily primary; indeed, even in Z
the non-primary ideal 6Z is the intersection of the prime ideals 2Z and 3Z. We have
seen that primary ideals in Z are precisely those generated by powers of primes and,
therefore, it follows from the Fundamental Theorem of Arithmetic that each proper
ideal of 7Z is the intersection of finitely many primary ideals. The main purpose of
this lecture is to prove the Lasker-Noether Decomposition Theorem, which states that
every proper ideal in a Noetherian ring can be expressed as an irredundant intersection
of finitely many primary ideals and that any two of such decompositions yield the
same set of radical ideals. This result was first proved by E. Lasker in the context of
polynomial rings, and the proof was then simplified and generalized by E. Noether.
Throughout this lecture, R is a commutative ring with identity.

Let P be a prime ideal of R. Recall that an ideal ) of R is called P-primary if @ is
primary and Rad Q = P. Although the intersection of primary ideal is not necessarily
primary, it turns out that the intersection of P-primary ideals is a P-primary ideal.

Proposition 1. If Q)4,...,Q, are P-primary ideals of R for some prime ideal P, then
ﬂ?zl Qj is also a P-primary ideal.

Proof. Set () := ﬂ?zl Q;, and let us verify that Rad @ = P. Since @); C P for every
i € [1,n], it follows that @ C P, which implies that Rad @ C Rad P = P. To argue
the reverse inclusion, take a prime ideal P’ containing (). Since @ ---Q, C Q C P, it
follows that Q; C P’ for some i € [1,n]. Thus, P = Rad Q; C P’. As a consequence,
P C Rad(@. Hence Rad@Q = P.

We proceed to prove that () is a primary ideal. To do so, take r,s € R such
that rs € @ and r ¢ (). Therefore r ¢ @; for some j € [1,n]. Since rs € Q)
and @); is a primary ideal, there exists n € N such that s” € @;. This implies that
s € Rad@; = P = Rad (@, and so s™ € @ for some m € N. Hence the ideal @) is
primary. 0

A proper ideal I of R is irreducible if for any ideals J and K in R such that [ = JNK
either J = I or K = I. One can readily verify that every prime ideal is irreducible.

The converse does not hold even for PIDs.
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Example 2. Consider the ideal 47Z of Z and write 4Z = aZ N bZ for some ideals
aZ and bZ. After assuming that a and b are positive, we see that a,b € {1,2 4}
and max{a,b} = 4. Thus, aZ = 47 or bZ = 4Z. We conclude that the ideal 4Z is
irreducible even though it is not prime.

It turns out that, in the context of Noetherian rings, every irreducible ideal is pri-
mary.

Lemma 3. In a Noetherian ring, every irreducible ideal is primary.

Proof. Let R be Noetherian ring, and let () be an irreducible ideal of R. Take a,b € R
such that ab € @ but b ¢ Q. For each n € N, consider the colon ideal

A, =(Q:(a")={reR:ra" € Q}.

One can readily see that (A, ),en is an ascending chain of ideals. Since R is Noetherian,
there is an n € N such that A,, = A, for every m > n. Now consider the ideals
I:=(a")+Q and J := (b) + Q. It is clear that @ C I N J. To argue the reverse
inclusion, take y € INJ and write y = ra™+q for somer € Rand ¢ € Q). AsaJ C Q, it
follows that ay € ). Therefore ra"*! = ay—aq € (). This implies that r € A, = A,,
and so y =ra” + q € Q. Thus, QQ = I N J. Because @ is irreducible, Q = I or Q) = J.
Now the fact that b ¢ @ ensures that @) = I, and so a" € Q). Hence @) is a primary
ideal. 0

Even in the context of Noetherian rings not every primary ideal is irreducible, as the
following example shows.

Example 4. Consider the ideal Q = (z,y)? of Q[z,y]. Since Q is a power of the
maximal ideal (z,y), it must be primary. However, ) is not irreducible because it
is the intersection of the ideals (x,y?) = (x) + (z,y)?® and (y,2?) = (y) + (z,y)*
(Exercise 2).

Remark 5. Even in the context of Noetherian rings, the notions of irreducible and
radical ideals are not comparable. Observe that the radical ideal 6Z of Z is not irre-
ducible because it can be written as 6Z = 2Z N 3Z. On the other hand, we have seen
in Example 2 that the non-radical ideal 4Z of Z is irreducible.

An ideal I of R has a primary decomposition if I = ﬂ?zl Q; for some primary ideals
Q1,...,Qn, in which case, {Rad@; : 1 < j < n} is called the set of radical ideals of
the decomposition. Such a decomposition is called wrredundant if the radicals of the
ideals Q1,...,Q, are all distinct and [, ,, @; € @ for any k € [1,n]. If every ideal
in R has an irredundant primary decomposition, then R is called a Lasker ring. An
associated prime ideal of I is a prime ideal of the form (I : Rc) for some ¢ € R\ I. Tt
turns out that when R is a Noetherian ring, every proper ideal [ has an irredundant
primary decomposition and also that the set of radical ideals of such a decomposition
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coincides with the set of associated prime ideals of I. In particular, every Noetherian
ring is a Lasker ring. This important result is due to E. Lasker and E. Noether.

Theorem 6. Fvery proper ideal I in a Noetherian ring R has an irredundant pri-
mary decomposition. In addition, the set of radical ideals of any irredundant primary
decomposition of I coincides with its set of associated prime ideals.

Proof. Let R be a Noetherian ring. By virtue of Lemma 3, in order to prove that
every proper ideal of R has a primary decomposition, it suffices to argue that every
proper ideal of R is the finite intersection of irreducible ideals. Suppose, by way of
contradiction, that this is not the case, and let .¥ be the set of all the ideals of R that
cannot be written as finite intersections of irreducible ideals. Since R is a Noetherian
ring and the set .¥ of ideals of R is nonempty, . must contain a maximal element .J.
Since J belongs to ., it is not irreducible and so there exist ideals I; and I both
properly containing J such that J = I} N [,. The maximality of J now implies that
both I and I, can be written as finite intersections of irreducible ideals in R. However,
this immediately implies that J can be also written as a finite intersection of irreducible
ideals in R, contradicting that J belongs to .. Thus, every proper ideal of R has a
primary decomposition.

In addition, one can easily see that any primary decomposition can be turned into
an irredundant primary decomposition by dropping unnecessary primary ideals from
the intersection and successively replacing all primary ideals with the same radical by
their intersection.

Finally, let us show that for every ideal I of R, the set of radical ideals of I is
{(I : Rc) € Spec(R) : ¢ € R\ I}. To do so, fix a proper ideal I of R, let I = (., Q; be
an irredundant primary decomposition of I, and set P; := Rad @), for a fixed j € [1,n].
Now write J = ﬂi# ()i, and observe that I = JNQ); is strictly contained in J. Since R
is Noetherian, there exists n € N such that P;' C Q;, and so JP! € JNQ; = I.
Assume that n is the minimum positive integer such that JP;' C I. Take ¢ € J Pf*l
such that ¢ ¢ I. The fact that ¢ € J, along with ¢ ¢ I, ensures that ¢ ¢ Q;. So
if r € R satisfies cr € I C @), then the fact that (); is primary guarantees that
r € RadQ; = P;. Hence (I : Rc) C P;. Conversely, observe that cP; C JPr C 1,
which implies that P; C (I : Re). Hence P; = (I : Rc), as desired.

Now fix ¢ € R\ I with (/ : Rc) prime and then set P := (I : Rc). Note that
there is a j € [1,n] such that ¢ ¢ Q;. Consider the ideal K := Il.¢q,Q;. Clearly,
cK € N, Q; =I. Therefore K C (I : Re) = P, and the fact that P is prime ensures
that Q; C P for some i € [1,n] with ¢ ¢ @;. Thus, Rad@; C P. On the other hand,
take x € P, and observe that cz € I C ();. Because Q; is primary and ¢ ¢ @Q;, it
follows that x € Rad ();. Hence P = Rad Q);. U

Let us proceed to discuss how primary decompositions behave under localization.
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Proposition 7. Let R be a Noetherian ring, and let I = ()., Q; be an irredundant
primary decomposition of a proper ideal I of R. Let S be a multiplicative subset of R
and assume that there is anm € [1,n] such that SNRad Q; = 0 if and only if i € [1,m].
Then

S = ﬁ S7Qi  and  °(S7'I) = ﬁ Qi
i=1 i=1

are irredundant primary decompositions of the ideals S™'I and ¢(S™'I), respectively,
where <(ST'I) is the contraction of S™'I.

Proof. As localization commutes with intersection of ideals, S™'I = ()_, S~'Q;, which
implies that S™'I = (-, S7'Q; because S7'Q; = S~'R when ¢ > m. Now note
that if for some j € [1,m] the inclusion ,; S™'Q; = S’l(ﬂi#j Qi) € S7'Q; held,
then (,_,; Q: € “(S7' (N Qi) € “(S7'Q;) = Q;. Hence S™'T = N, S7'Q; is an
irredundant primary decomposition. Since the extension of ideals I — S~I induces
a bijection from the set of primary ideals of R disjoint from S to the set of primary
ideals of S™'R (whose inverse is given by J — ©J), after contracting both sides of the
equality S™'7 =N, S7'Q;, we obtain the primary decomposition ¢(S™'1) = ", Qi
in R of the ideal “(S~'I), which is irredundant because I = (), Q; is irredundant. O

Let R be a Noetherian ring, and let I = (), @; be an irredundant primary decom-
position of a proper ideal I of R. For each i € [1,n], the ideal Q); is called the primary
component of the associated prime ideal Rad );. If an associated prime ideal P of I is
minimal in the set of all associated prime ideals of I, then P is called an isolated prime

tdeal of I. The rest of the associated prime ideals of I are called embedded prime ideals
of I.

Proposition 8. Let R be a Noetherian ring, and let I be a proper ideal of R. Then
the primary components of isolated prime ideals in an irredundant primary decom-
position of I are uniquely determined by I (i.e., they do not depend on the primary
decomposition).

Proof. Let {P; : i € [1,n]} be the set of associated prime ideals of I, and let P be
an isolated prime ideal of I. Consider the multiplicative subset S := R\ P of R,
and observe that S N P; is nonempty for every P; distinct from P. Let I = (), Q;
be an irredundant primary decomposition of I with Rad@; = P. It follows from
Proposition 7 that Ip = (_,(Q:)p = (Q1)p, and so Q1 = °(Ip) because Q; is a
primary ideal. 0
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EXERCISES

Exercise 1. The Fundamental Theorem of Arithmetic (FTA) states that every nonzero
positive integer greater than 1 uniquely factors (up to permutations) into primes. De-
duce the FTA from the Noether-Lasker Theorem (Theorem 6).

Exercise 2.

(1) Prove that the ideal Q = (z,y)? of Q[x,y] is a primary ideal that is not irre-
ducible (Hint: show that Q is the intersection of the ideals (z,y?) = (z)+(z,y)?

and (y,2%) = (y) + (z,y)?).

(2) Find a commutative ring with identity having an irreducible ideal that is not
prImary.

Exercise 3. Let R be a commutative ring with identity. Prove the following statements.
(1) If Q be a P-primary ideal of R, then QR|x] is a PR[z]-primary ideal of R|x]
lying over Q, that is, QR[z] N R = Q.
(2) If I, ..., I, are ideals of R, then ((;_, I;) Rlz] = M;_, I; R[z].
Exercise 4. Let K be an infinite field, and set Q, = (y — ax, x?) for any a € K.
(1) Prove that Q, is a primary ideal of Klz,y] for all o € K.
(2) Show that (2%, xy) = (z) N Q4 is an irredundant primary decomposition of
(22, zy) in K[z, y|] for alla € K.
(3) Find the associate prime ideals of (x*, zy) in K|z,y].
(4) Prove that Q, # Qp for any o, € K with o # 3.

(5) Deduce that an ideal may have infinitely many irredundant primary decomposi-
tions (even in the context of Noetherian rings).
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